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Abstract
In this paper, the full-potential linearized augmented plane-wave (LAPW)
method within the generalized gradient approximation (GGA) was used to
calculate the effect of hydrostatic pressure at zero temperature on the 4d
transition metal zirconium. For the hexagonal close-packed (hcp), omega (ω),
and body-centred cubic (bcc) structures the enthalpy, H = E + pV , was
calculated as a function of pressure p. We obtained an ω to bcc transition
pressure of 28.2 GPa. Temperature-dependent contributions were obtained from
tight-binding calculations of the phonons in the quasiharmonic approximation
and were used to calculate the Gibbs free energy as a function of both
temperature T and pressure for these three structures. From the comparison
of these free energies the phase boundaries were calculated in the T –p
phase diagram, and compared to the experimentally determined boundaries.
We discuss the importance of anharmonicity for understanding the material
properties of zirconium, and limitations of quasiharmonic phonon theories for
predicting phase transformations.

1. Introduction

Density-functional theory (DFT) calculations based on the generalized gradient approximation
(GGA) [1, 2] have proven to be an effective tool for studying the properties of many systems at
zero temperature, ranging from bulk materials to clusters and surfaces. With the availability
of increasingly powerful computers and efficient algorithms, it is now possible to perform
calculations for reasonably large systems. Despite these advances, the application of ab initio
methods to the study of finite-temperature thermodynamic effects such as thermal expansion
and phase diagrams remains challenging, since such effects involve lattice contributions to
the free energy that can be difficult to evaluate, especially if anharmonic contributions are
important. In this paper we use tight-binding methods to extend first-principles approaches in
order to calculate the free energy and phase diagram of a complex transition-metal material,
zirconium.
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The thermodynamic properties of zirconium have been the subject of many
experimental [3–9] and theoretical [1, 10–13] studies. At room temperature and ambient
pressure, the stable crystalline state of this early 4d transition metal is a hexagonal close-
packed (hcp) structure (the α phase). When the temperature is raised, at zero pressure, Zr
transforms martensitically into the body-centred cubic (bcc) structure (the β phase) at 1136 K,
and then eventually melts out of the bcc phase. When the pressure is increased at room
temperature, a martensitic phase transformation into the omega structure (ω phase) is observed
between 3.3 and 6.7 GPa [14]. At even higher pressures, 30–35 GPa, Zr exhibits a martensitic
transformation into the bcc structure [3–6].

This paper is organized as follows. In section 2, we focus on the zero-temperature
transitions of Zr under pressure. To this end, we have calculated the enthalpy has a function of
pressure for the bcc, hcp, and ω structures. For the hcp and ω structure, we have minimized
the energy at each volume by varying the c/a ratio. In section 3, we have added temperature-
dependent contributions and calculated the Gibbs free energy as a function of both temperature
and pressure for these three structures using phonons obtained by the tight-binding approach
within the quasiharmonic approximation. Comparison of these free energies enables us to
calculate phase boundaries in the T –p phase diagram. We finish the paper with a summary and
discussion in section 4.

2. Zero-temperature transitions

2.1. Details of the calculation

We have used the WIEN2k full-potential LAPW package [15] to calculate the zero-temperature
total energies for the three structures (bcc, hcp, and ω) considered. The GGA [2] potential was
used to include the effects of exchange and correlation. Aiming at high precision, we used a
plane-wave cutoff of RKmax = 9, a largest vector in the charge density Fourier expansion of
Gmax = 20/a0 (a0 is one Bohr radius, ≈0.529 Å), and a criterion of 0.01 mRyd for energy
convergence. The muffin-tin radius was set to 2.0a0 in all calculations. We carefully checked
the convergence in terms of k-points: for the bcc structures, we show in figure 1 the convergence
as a function of volume. Much to our surprise, the convergence is far better at experimental
volume (23.34 Å) than for the high pressure (small volume) regime. For the other two structures
(hcp and ω), we tested the convergence at ambient pressure and in the high pressure regime. In
order to converge the total energy below 0.1 mRyd/atom, we chose 30 000 k-points in the full
Brillouin zone (BZ) for the bcc structure, 7500 k-points in the full BZ for the hcp structure, and
2000 k-points in the full BZ for the ω structure, corresponding to 816, 427, and 128 k-points in
the irreducible wedge of the BZ, respectively.

For the bcc structure, we calculated the total energy E at six volumes V and fitted our
energy–volume data points with the Rose equation of state [16].

For the hcp and the ω structures we optimized the c/a ratio (as a function of volume or
pressure) by first determining the c/a range for each structure and then calculating the Rose
equation of state for five (hcp) or four (ω) fixed c/a ratios (in the same manner as done for
the bcc structure). Using these equations of state, we can pick any fixed volume V and fit a
parabola to the total energy as a function of c/a. The minimum of this parabola corresponds
to the c/a ratio and the total energy E (for volume V ). In this way we can obtain c/a and E
as a function of volume. Finally, we fit E(V ) to our equations of state, and from this we can
also determine the functional dependence of c/a on pressure through its volume, i.e., c/a(p)

= c/a(V (p)). Finally, we also calculate the enthalpy H = E + pV for the three structures as
a function of pressure p.
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Figure 1. DFT-GGA: total energy difference versus volume for the bcc structure for different
number of k-points (with respect to the total energy calculated with 100 000 k-points).

We should note that the root-mean-square errors of both the equations of state fits and the
parabola fits were found to be well below 0.1 mRyd/atom, such that 0.1 mRyd/atom remains
our error estimate for total energies.

2.2. Results

Figure 2 shows the enthalpy H = E + pV as a function of pressure p (with respect to the
enthalpy of the bcc structure) for the three structures considered (bcc, hcp, and ω). At zero
pressure, we found the ω structure to have the lowest enthalpy, and to be 0.15 mRyd/atom
lower than for the hcp structure. We found the same total energy differences between these
two structures at the experimental volume. However, Jomard et al [11] found the opposite.
In their calculations the hcp structure was 0.25 mRyd/atom lower than the ω structure at
the experimental volume, using the PW91 GGA functional [17] at a level of convergence
of 0.15 mRyd/atom. Nonetheless, all of these energy differences are very close to the level
of convergence of first-principles band-structure calculations, and, for practical purposes, one
should probably consider both structures to be effectively degenerate.

At 21.0 GPa we found the enthalpy of hcp to cross that of the bcc; however, the enthalpy
of the ω structure is still lower than that of the other two.

Of more interest is the crossing of the enthalpy of the ω structure with the enthalpy of the
bcc structure, which occurs at 28.2 ± 0.4 GPa. The estimated error was determined by shifting
the energy of one of these structures by 0.1 mRyd/atom (note that we converged all total
energies below this value) in order to see the effect on the transition pressure, which changed
by about 0.4 GPa. Our calculated transition pressure is in good agreement with experimental
results from Xia et al [3, 4], who found the transition pressure to be about 30–35 GPa through
diamond-anvil experiments. It is also in good agreement with the GGA result of 29.1 GPa [12],
although the c/a ratio of the ω structure was assumed constant in these calculations (see below).

We have summarized the various experimental and theoretical results in table 1. Due to
the variety of different LDA results found in the literature for the ω → bcc transition pressure,
we have calculated this pressure using the LDA [18] to include the effects of exchange and
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Figure 2. DFT-GGA: enthalpy H of the three structures with respect to the enthalpy of the bcc
structure.

Table 1. The ω → bcc transition pressure from various references. ‘A’ refers to this work. The
experimental results are at room temperature.

LDA GGA Expt.

p (GPa) Reference p (GPa) Reference p (GPa) Reference

5.0 [10] 35.4 [11] 30 ± 2 [3]
48.3 [13] 29.1 [12] 35 ± 3 [4]
11.2 [11] 28.2 ± 0.4 A 31 [5]
17.8 [12] 33 [6]
16.2 ± 0.3 A

correlation. Except for using the LDA (instead of the GGA), all details of the calculation are
the same as described above. From the LDA we find the ω → bcc transition pressure to be at
16.2 ± 0.3 GPa.

Figure 3 shows the pressure dependence of the c/a ratio of the hcp and the ω structure
(GGA again). At zero pressure we find c/a = 1.591 for the hcp structure and c/a = 0.624 55
for the ω structure. These results compare very well with experimental values, which are 1.593
for hcp [19] and 0.625 ± 0.002 for ω [3].

At the ω → bcc transition pressure (28.2 GPa), we find c/a = 0.622 75 for the ω structure
which is only 0.3% smaller than the c/a ratio at zero pressure. For the transition pressure, the
difference of the total energy of the ω structure at these two c/a ratios is only about 5 µRyd—
far smaller than our error estimate. Therefore it is justified (as done in [12]) to assume c/a
constant for the ω structure. However, for the hcp phase we find c/a increasing by about 7%
when increasing the pressure from zero to 40 GPa. Jona and Marcus [10] have also calculated
the c/a as a function of pressure from the LDA. They find the same trend, i.e., the c/a for
the hcp structure increases with pressure and c/a for the ω structure decreases with pressure.
However, over the range of pressure from 0 to 20 GPa they see about a 3% change in the c/a
ratio for the ω structure, which is more than one magnitude larger than our result.
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Figure 3. DFT-GGA: c/a ratio as a function of pressure of the ω and the hcp structures.

3. Finite-temperature treatment

To calculate the temperature–pressure phase diagram, i.e., the temperature dependence of the
phase transitions caused by pressure, a knowledge of the Gibbs free energy G(T, p) is required.
We have used the NRL tight-binding (TB) approach [20] to calculate the zero-temperature
phonons within the quasiharmonic approximation for the three structures. Knowledge of
these phonons, as well as the electronic density of states, makes it possible to calculate the
temperature-dependent contributions to the free energy.

3.1. Tight-binding approach

The NRL tight-binding approach [20] is designed to reproduce ab initio DFT calculations by
fitting the model parameters to DFT band structures and total energies. Being a parameterized
version of the DFT calculations, the method is computationally orders of magnitude faster than
DFT itself.

The total DFT energy is given by (i = {k, n})
E[n] =

∑

i

f (εi − µ)εi + F[n], f (z) = 1

1 + eβz
, (1)

that is, a sum over the energy eigenvalues εi (weighted by the Fermi function f ) plus a
remaining density functional F[n] which contains (i) the ion–ion interaction energy, (ii) parts
of the Hartree and exchange energy not yet included in the sum, and (iii) corrections for double
counting. In the NRL-TB model, the Kohn–Sham potential (and hence the eigenvalues εi ) are
shifted by V0 = F[n]/Ne , such that E[n] = ∑

i f (ε ′
i − µ′)ε ′

i . The shifted ε ′
i are considered

functions of only the crystal structure and the volume. The tight-binding method reproduces ε ′
i
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over a wide range of structures and volumes and solves the shifted total energy problem. For
the nonorthogonal tight-binding model we use a basis consisting of s, p, and d orbitals. This
models requires 73 parameters of which 60 are used to describe the intersite matrix elements
of the Hamiltonian

h��′m(r) = (a��′m + b��′mr) exp(−c2
��′mr) fc(r), (2)

and overlap matrix

s��′m(r) = (a′
��′m + b′

��′mr) exp(−c′2
��′mr) fc(r), (3)

where fc(r) = 1/(1 + e2(r−r0)) is a function which ensures a smooth cutoff at large distances
(we use r0 = 17.0 Bohr). The on-site Hamilton matrix elements are described by

eα = e0
α + e1

αρ
2/3 + e2

αρ4/3 + e3
αρ2 (4)

where α denotes the � character of the orbital, i.e., s, p, and d, and ρ is a measure of the valence
electron density, given by

ρ =
∑

i �= j

exp(−λ2ri j) fc(ri j). (5)

The accuracy and transferability of the method depends on the determination of these 73
parameters.

The database used for fitting the tight-binding parameters of zirconium consists of energy
bands and total energies calculated using the WIEN2k full-potential LAPW package [15].
Again, the GGA [2] potential was used to include the effects of exchange and correlation.
To fit the 73 parameters to the DFT database, we use a standard nonlinear least-squares
algorithm [21], the Levenberg–Marquardt method. For the cubic structures, the symmetry of
special k-points in the first Brillouin zone is taken into account [22]. The database consists of
DFT calculations for bcc, fcc, simple cubic, hcp, diamond, and ω structures at nine volumes
around the experimental equilibrium volume, ranging from 16 to 30 Å.

Using this database, we have created a tight-binding fit, in which we have included total
DFT energies (with weights between 1000 and 5000 larger than the weights of the individual
energy eigenvalues) in the fitting procedure. Our root-mean-square error for the total-energies
fit (for the various structures and volumes) was about 2.5 mRyd/atom.

3.2. Phonons

In order to calculate the phonons, we evaluated the force constants from the tight-binding model
by using the direct-force method [23], which relies on calculating the forces on all atoms (l, k),
i.e., the kth atom in lth cell, in the supercell in which one atom (0, k ′) has been displaced from
its equilibrium position. In the quasiharmonic approximation, the force constants are given by

φαβ(0k ′, lk) = − ∂ Fβ(l, k)

∂uα(0, k ′)
≈ − Fβ(l, k)

uα(0, k ′)
, (6)

i.e., the ratio of the negative force on atom (l, k) in the β direction to the displacement of
atom (0, k ′) in the α direction. In the tight-binding model, the actual calculation of the forces
in equation (6) is achieved by evaluating analytic derivatives of the Hamiltonian and overlap
matrix elements and the on-site terms [24]. Once the forces constants have been calculated, the
phonons are evaluated by diagonalizing the dynamical matrix

Mαβ (q, kk ′) =
∑

l′
φαβ(0k, l ′k ′) exp

{
iq · [x(l ′, k ′) − x(0, k)]} , (7)

where q is the wavevector and x(l, k) is the atom position. However, if the forces do not vanish
inside the supercell, we introduce errors due to (super) cell–cell interactions. The supercell,
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consisting of replicas of the primitive or conventional unit cell, in general does not have the
crystal symmetry. Therefore, cell–cell interactions will contribute force constants which violate
the symmetry rules of the force constants. Let Sm be a space group element, S its proper or
improper rotation and v its translation; that is,

Smx(l, k) = x(L, K ) = Smx(l, k) + vm. (8)

Then

φαβ(lk, l ′k ′) = Smφαβ(lk, l ′k ′)ST
m, (9)

where φ is a 3× 3 matrix with elements φαβ (see [25]). Since equation (9) will no longer hold
when cell–cell interactions are present, it is necessary to restore this symmetry in order for the
phonons to have the correct symmetry, i.e., the eigenvalues of equation (7) are unchanged by
q → Sq. We achieve this by applying all symmetry operations, and then averaging over these
within equation (9). This means replacing

φαβ(0k, l ′k ′) exp
{
iq · [x(l ′, k ′) − x(0, k)]} , (10)

in equation (7) by

1

N

N∑

m=1

Smφαβ(0k, l ′k ′)ST
m exp

{
iq · Sm[x(l ′, k ′) − x(0, k)]} , (11)

where N is the number of space group elements. Using this scheme, we have calculated the
phonon energies from force constants evaluated from 3×3×3 supercells for the three structures
for 12 different volumes corresponding to pressures ranging from −5 to 40 GPa. Figure 4
shows a comparison of the phonons calculated at ambient pressure with experimental phonon
data from neutron scattering [9]. Although the discrepancies between theory and experiment,
which are probably mainly due to tiny errors in the tight-binding fits (of the order of fractions
of mRyd), are larger than we would ideally like, the level of accuracy is reasonably adequate
for thermodynamic properties, since such calculations average over the entire phonon spectra.

3.3. Melting criteria

From the phonon density of states, we have calculated the root-mean-square displacement of
each atom from its equilibrium site in terms of the mean radius (Wigner–Seitz radius S), as a
function of temperature, i.e., x = √〈u2〉/S. The quantity 〈u2〉 can be evaluated by expressing
u in terms is creation and annihilation operators, and we find

〈u2〉 =
∫

h̄

Mω

(
1 + 2

exp(h̄ω/kBT ) − 1

)
g(ω) dω, (12)

where M is the mass of one atom. Figure 5 shows x calculated from the hcp phonon density
of states at ambient conditions. The zero-temperature motion is about 6% of the Wigner–Seitz
radius. The Lindemann melting criterion suggests that the solid will melt when x approaches
some standard value xm which seems to be in the range of 0.2–0.25 for most solids [26].
According to this criterion, neglecting the fact that Zr melts in its bcc phase at ambient pressure,
the melting should occur between 625 and 980 K, which is much lower that the experimentally
observed [14] melting temperature Tm of 2128 K. This discrepancy suggest a large temperature
dependence of the phonons, which is in fact observed experimentally [9]. Our quasiharmonic
phonons are calculated at zero temperature and have no temperature dependence.

The Lindemann melting formula [27], which can be written as

x2
m MkB
2S2 = 9h̄2Tm, (13)
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Figure 5. Root-mean-square displacement divided by the Wigner–Seitz radius S, i.e. x = √〈u2〉/S.
The solid line shows x as calculated from the phonon density of states, and the dashed line shows
x =

√
9h̄2T/MkB
2/S with a Debye temperature of 
 = 253 K, and S = 3.35 Bohr. The shaded

region indicates the range of x where solids typically melt. We have also indicated the experimental
melting temperature.

may be used to estimate the Debye temperature 
 from the melting temperature. Using
xm = 0.225 and Tm = 2128 K in equation (13) one obtains 
 = 253 K, which is in good
agreement with other experimental data [28]. Using this Debye temperature, we have also
plotted x from equation (13) in figure 5.
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begins to strongly deviate from the expected linear harmonic behaviour by x2 = 0.01 or x = 0.1.

Zirconium has very strong anharmonicities, which we believe is a major cause of many
of the anomalies seen in physical properties. The phonons have a well-known temperature
dependence [9]. Theoretical papers attempting to explain the mechanism for the bcc to ω

transformation have focused on the L(2/3, 2/3, 2/3) bcc phonon of Zr, which softens as a
function of temperature and is a precursor to the ω transformation. See, for example, [29]
and papers cited in [1] and [30]. A typical example of the anharmonicity of Zr is the restoring
force for the frozen L(2/3, 2/3, 2/3) phonon as a function of displacement that is shown in
figure 4 of [29], which oscillates in sign as the displacements become larger. Similarly, in
figure 6 we show the dependence of the frozen phonon energy for the transverse optical phonon
at the �-point as a function of displacement squared as calculated by DFT (Wien2k). Strong
deviations from harmonic behaviour already occur at an x as small as 0.1. This corresponds
to the average displacement of Zr at a temperature between 100 and 400 K (depending on the
model used for the mean displacement; see figure 5). All of these calculations indicate how
quickly Zr becomes anharmonic as a function of displacement for any type of phonon mode.
In our phonon calculations we used a rather small value of displacement, corresponding to a
u = 0.03 Bohr (or x = 0.009), in order to be sure that our phonons were in the harmonic limit
and were independent of displacement. Clearly, these types of anharmonicities can affect the
phase diagram at higher temperatures.

3.4. Free energy and phase diagram

We are now in a position to calculate the free energy in the quasiharmonic approximation [31].
In this approximation, the ionic contribution to the free energy depends on the volume-
dependent phonon density of states, g(ω, V ), through the zero-point energy

Uzero(T, V ) =
∫

h̄ω

[
1

exp(h̄ω/kBT ) − 1
+ 1

2

]
g(ω, V ) dω (14)
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and the quasiharmonic free energy [32]

FH(T, V ) = kBT
∫

ln
[
1 − exp(−h̄ω/kBT )

]
g(ω, V ) dω. (15)

The electronic contribution, which we found to be one order of magnitude smaller than the
ionic contribution, depends on the volume-dependent electronic density of states, nel(E, V ),
and is given by [32]

Fel(T, V ) = kBT
∫ [

f ln f + (1 − f ) ln(1 − f )
]

nel(E, V ) dE . (16)

Adding these contributions to the zero-temperature internal energy, we have evaluated the
Helmholtz free energy F as a function of temperature and volume (within the quasiharmonic
approximation).

In order to calculate the phase digram, it is necessary to use T and p as independent
variables, instead of T and V . Using [33]

(
∂ F

∂V

)

T

= −p, (17)

we can calculate the volume V corresponding to a given pressure p for a given temperature T .
This enables us to evaluate the Gibbs free energy

G(T, p) = F(T, V ) + pV (18)

for the three crystal structures.
Comparison of these energies as a function of pressure and temperature allows us to

identify the transformation lines. It should be pointed out that this approach is extremely
demanding, since very small errors in the Gibbs free energies can drastically change the
phase transformation lines. Figure 7 shows a comparison of the predicted phase boundaries
with experimental results. Note that not all phase boundaries can be predicted with our
model, because the quasiharmonic phonons in some volume ranges for the different phases
are unstable, i.e., some phonon frequencies are imaginary. In particular, the hcp phase
becomes unstable at high pressures, whereas the bcc phase becomes unstable at low pressures.
This is a generic problem when calculating any phase diagram from quasiharmonic phonons
(whether calculating the phonons from tight-binding or LDA/GGA first-principles band-
structure methods). High-temperature phases are often stabilized by temperature-dependent
phonons and theories based on zero-temperature phonons will simply prove inadequate. To
fix this problem will require either self-consistent phonon theories or possibly some form of
molecular dynamics that uses electronic structure theory to calculate the forces between the
atoms in a large supercell. Given how difficult phase diagrams are to calculate, the agreement
in figure 7 is quite reasonable.

To plot the experimental ω → bcc transition line we have indicated the range of
experimental values reported in the literature (see table 1). Our calculated value is at the low
end of these values. The most likely cause for this discrepancy is because small amounts of
impurities can block the martensitic transitions in these types of metals (see, for example,
the case for the related material Ti [34]), and cause the transition pressure to move to
higher pressures. Since our zero-temperature transition pressure is based on high-quality first-
principles approaches and agrees well with similar calculations by Grad et al [12], we feel that
our predicted transition pressure is likely to be close to the true equilibrium value.

Our zero-temperature band-structure results predict that the ω phase has a slightly lower
enthalpy than hcp phase (the room-temperature equilibrium phase); however, if zero-point
motion effects are added to the enthalpy, the situation reverses and we find that the hcp phase
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Figure 7. Predicted phase diagram. The solid lines show the predicted phase boundaries from our
tight-binding fit, and the dashed lines show some of the experimental results. The dashed lines
are from [14]. The bar at room temperature for the bcc to ω transition represents the range of
experimental values for this transition (see table 1) and includes experimental error bars. The bar
at room temperature for the hcp to ω transition represents the range of experimental values for this
transition; see the range of values summarized in [35].

is the more stable zero-temperature phase for Zr. In fact, if we carefully plot our predicted
phase boundary line as a function of temperature, we find that the hcp and ω phases go through
a single oscillation in stability with transition pressures of the order of 0.1 GPa. This is an
indication that, within the accuracy of our calculations, for all temperatures below 100 K both
phases have almost identical free energies and we cannot distinguish which phase is more
stable. For all temperatures above 100 K, we find that the hcp phase is more stable than the
ω phase at zero pressure (cf figure 7). At higher temperatures, we find that the predicted
pressure for the transition tends to curve above the experimental values. We believe that this is
caused by the optical �-point phonons becoming unstable in the hcp phase in our tight-binding
calculations. DFT-GGA calculations for these zone-centre optical phonons did not have these
instabilities.

4. Summary

In this work, we have investigated the phase transitions of solid zirconium at zero and finite
temperatures. From the GGA, we have found the ω → bcc transition pressure at T = 0 to be
28.2 ± 0.4 GPa, which is only a little lower than the experimental results that range between 28
and 38 GPa at room temperature. It is likely that impurity effects cause an elevated experimental
transition pressure. The calculated c/a ratios for the hcp and ω structures at zero pressure are
in very good agreement with experiment.

In order to treat finite-temperature effects, we included temperature-dependent
contributions and calculated the Gibbs free energy. For the relevant pressure range for the
three structures, we have calculated phonons using the tight-binding approach within the
quasiharmonic approximation. Phonons for the hcp structure at ambient pressure compare
reasonably well with experiment. The theoretically predicted phonons were used to calculate
phase boundaries in the T –p phase diagram. At high temperatures, our calculations are
likely to have errors, since we are using zero-temperature quasiharmonic phonons to calculate
the thermodynamic free energies. According to experiment [9], the phonons have a strong
temperature dependence at high temperatures.
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We are only able to calculate pieces of the phase boundaries due to the instability of
quasiharmonic phonons for the different phases, which often are only stable for a limited range
of lattice constants. The experimental phonons at finite temperature in Zr are stabilized by the
strong anharmonic behaviour of the atomic forces. Future work will need to find some way to
include these strong anharmonicities in order to extend the pieces of the phase boundaries that
can be calculated and to improve the agreement with experiment at higher temperatures.
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